
Server Directed Collective I/O for Arrays
in Large Scale Applications

Prof. Marianne Winslett
 Subramaniam Mahesh

Department of Computer Science
University of Illinois

Outline

• Goals
• Server Directed I/O architecture
• Performance results
• Future Work
• Conclusions

Goals

• Simple high level interfaces
– Easy to use
– Application portability
– Flexible, efficient underlying implementation

• High Performance
• Target architectures

– Parallel platforms
– Sequential platforms

System architecture

MPI

MPI

MPI

MPI

Panda Clients

Interconnect
 / Network

MPI File
System

MPI File
System

MPI File
System

MPI File
System

Panda Servers

Motivation

• Traditional file systems
– random disk seeks
– prefetching and buffering errors

• Server directed I/O
– Servers direct the I/O requests
– sequential reads and writes whenever possible
– minimize random disk seeks
– minimize buffering and prefetching errors

Simple interface

Array *density = new Array(“density”, array_rank,
 array_size, int_size_in_bytes,
 mem, mem_dis, disk, disk_dist);

Array *temperature =
ArrayGRoup *sim = new ArrayGroup(“Sim”, “sim.schema”);
sim->include(temperature);
sim->include(density);
for (int i=0; i<100; i++) {
 compute_next_timestep();
 sim->timestep();
 }

Performance measurements

• Platforms tested
– IBM SP2 (NAS Ames, Cornell Theory Center)
– HP Cluster (NOW)

• Parameters
– File system utilization
– Interconnection network utilization
– Scalability

Performance results

Natrual chunking, 16 compute
nodes, simulated writes

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

2 4 6 8
Number of I/O nodes

16 MB 32 MB 64 MB 128 MB

Reorganization, 16 compute

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

2 4 6 8
Number of I/O nodes

16 MB 32 MB 64 MB 128 MB

Performance results

• High performance for large arrays
• H3espresso (Black hole application)
• Potential for improvement

– finely distributed small arrays
– slower network

Future Work

• Performance modeling
• Networks of workstations
• Shared and Part-time I/O nodes
• Application studies
• Out-of-core applications

Conclusions

• Simple high level interfaces
– easy to use
– flexible and efficient underlying implementation
– application portability

• Server Directed I/O
– high performance

